Frequency converters Danfoss FC 101 and FC 102
Novenco control user guide

Contents
1. General
2. Wire configuration
3. First time run after installation
4. Configuration of FC101 converter
5. Configuration of FC102 converter
6. Modbus configuration
7. Reference documentation
8. Patents and trademarks
9. Declaration of conformity

1. General
The procedures in this guide serve as examples of how to control the Danfoss FC 101 and FC 102 frequency converters in combination with Novenco fans.
Please read all relevant parts of this complete guide.

Procedures and methods in this guide should be followed for the warranty to remain valid.

Table 1. Icons in guide

<table>
<thead>
<tr>
<th>Icons</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk of damage to equipment</td>
<td></td>
</tr>
<tr>
<td>Risk of injury or death</td>
<td></td>
</tr>
</tbody>
</table>

Available control modes

- Voltage mode
 This is the most common.

- Current mode
 This is most immune to noise.

- Modbus
 This is advanced use with best control.

2. Wire configuration
Check wires are correctly connected

- Check that a wire connects the terminals no. 12 and 27 in the frequency converter.
- Connect a control wire to terminal no. 18 in the frequency converter. The terminal must pull high (24 V) to activate the converter.
- Check the signal wire is connected to terminal no. 53. For voltage control the signal levels are 0 - 10 V and for current control the levels are 4 - 20 mA.
- Check that ground is connected to terminals no. 20 and 55.

Figure 1 Terminal block set up for voltage control

Figure 2 Terminal block set up for current control
3. First time run after installation

How to check the installation is correct

1. Check the installation is powered off on the main switch.
2. Check the fan and frequency converter are installed correctly. Refer to the installation and maintenance guides for the fan and frequency converter.
3. Power on the installation at the main switch. The frequency converter starts in idle mode.

4. Configuration of FC101 converter

The converter is set up for voltage mode as standard. The minimum speed is indicated with 0 V and the maximum speed with 10 V.

4. Push Hand On on the local control panel (LCP) on the frequency converter. This activates the fan rotor.
5. Check the direction of rotation is consistent with the arrows on the fan casing.
6. Turn off the installation at the main switch.
7. Connect the start signal wire to terminal no. 18.
8. Voltage or current mode:
 Connect the reference wire to terminal no. 53.
 Modbus mode:
 Connect the reference wires to terminals no. 68 and 69.

Figure 3 Wire diagram for the FC101
4.1 Change from voltage to current control

How to change the FC101 to current control

1. Push the Menu button on the LCP on the frequency converter.
2. Push the ↓ and ↑ buttons to navigate to the Wizard. Push OK to select.
3. Push ↓ to navigate to the following menu item.
6-19 Terminal 53 mode
[1] Voltage mode
4. Push OK to access and use the ↓ and ↑ to select current mode.
5. Push OK to accept.

The frequency converter now operates in current mode for control signals. The minimum speed is indicated with 4 mA and the maximum speed with 20 mA.

5. Configuration of FC102 converter

The converter is set up for voltage mode as standard. The minimum speed is indicated with 0 V and the maximum speed with 10 V.

![Wire diagram for the FC102](image_url)

Figure 4 Wire diagram for the FC102
5.1 Change from voltage to current control

How to change the FC102 to current control

1. Remove the screw that holds the lid on the frequency converter.
2. Pull out the LCP with a straight pull.
3. Locate the text A53 U - I.
4. Push the button from position U to I with a screwdriver.
5. Put the LCP back.
6. Attach the lid and insert the screw.

The frequency converter now operates in current mode for control signals. The minimum speed is indicated with 4 mA and the maximum speed with 20 mA.

6. Modbus configuration

All parameters are accessible through Modbus RTU (Remote Terminal Unit) either directly or via PCD (Process Data).

To setup the Modbus RTU

1. Push the Menu button two times.
2. Push \(\downarrow \) to navigate to 8-** Comm. and Options.
3. Push OK.
4. Push \(\downarrow \) to navigate to 8-3 FC port settings.
5. Push OK.
6. Push OK again.
7. Push \(\downarrow \) to navigate to [2] Modbus RTU.
8. Push OK to confirm.
9. Push \(\downarrow \) to navigate down and check the following settings.
 - Address
 - Baud Rate
 - Parity / Stop bit
 - Minimum Response Delay
 - Maximum Inter-char...
10. Push OK to select, the \(\downarrow \) and \(\uparrow \) buttons to change and push OK to confirm settings.

Write and start-stop notes

- PCD: It is possible to configure up to 64 parameters in PCDs. Write PCDs in par. 8-42.xx, and read PCDs in par. 8-43.xx. These PCDs are accessible via holding registers 28xx and 29xx.
- Write control word: Par. 8-42.0 and par. 8-42.1 are set to the control word and as reference, respectively. Set par. 8-42[2-63] to the par. no. to write to.
- Start-stop: Write the control word to register 2810 to start or stop the converter.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Bit value = 0</th>
<th>Bit value = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Reference value</td>
<td>External selection LSB</td>
</tr>
<tr>
<td>01</td>
<td>Reference value</td>
<td>External selection MSB</td>
</tr>
<tr>
<td>02</td>
<td>DC brake</td>
<td>Ramp</td>
</tr>
<tr>
<td>03</td>
<td>Coasting</td>
<td>No coasting</td>
</tr>
<tr>
<td>04</td>
<td>Quick stop</td>
<td>Ramp</td>
</tr>
<tr>
<td>05</td>
<td>Hold output frequency</td>
<td>Use coasting</td>
</tr>
<tr>
<td>06</td>
<td>Ramp stop</td>
<td>Start</td>
</tr>
<tr>
<td>07</td>
<td>No function</td>
<td>Rest</td>
</tr>
<tr>
<td>08</td>
<td>No function</td>
<td>Jog</td>
</tr>
<tr>
<td>09</td>
<td>Ramp 1</td>
<td>Ramp 2</td>
</tr>
<tr>
<td>10</td>
<td>Data invalid</td>
<td>Data valid</td>
</tr>
<tr>
<td>11</td>
<td>Relay 01 open</td>
<td>Relay 01 active</td>
</tr>
<tr>
<td>12</td>
<td>Relay 02 open</td>
<td>Relay 02 active</td>
</tr>
<tr>
<td>13</td>
<td>Parameter set-up</td>
<td>Selection LSB</td>
</tr>
<tr>
<td>14</td>
<td>< Not used ></td>
<td>< Not used ></td>
</tr>
<tr>
<td>15</td>
<td>No function</td>
<td>Reverse</td>
</tr>
</tbody>
</table>

Table 2. Control word bit positions

Read notes

- The reference register is 2811 with 0 - 4000 hex (0 - 100%).
- Read status word: Par. 8-43.0 and par. 8-43.1 are set to status word and main actual value, respectively. Set par. 8-43[2-63] to the par. no. to read from.
• Read status word: Read the status word from register 2910.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Bit value = 0</th>
<th>Bit value = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Control not ready</td>
<td>Control ready</td>
</tr>
<tr>
<td>01</td>
<td>Drive not ready</td>
<td>Drive ready</td>
</tr>
<tr>
<td>02</td>
<td>Coasting</td>
<td>Enable</td>
</tr>
<tr>
<td>03</td>
<td>No error</td>
<td>Trip</td>
</tr>
<tr>
<td>04</td>
<td>No error</td>
<td>Error (no trip)</td>
</tr>
<tr>
<td>05</td>
<td>Reserved</td>
<td>-</td>
</tr>
<tr>
<td>06</td>
<td>No error</td>
<td>Triplock</td>
</tr>
<tr>
<td>07</td>
<td>No warning</td>
<td>Warning</td>
</tr>
<tr>
<td>08</td>
<td>Speed ≠ reference</td>
<td>Speed = reference</td>
</tr>
<tr>
<td>09</td>
<td>Local operation</td>
<td>Bus control</td>
</tr>
<tr>
<td>10</td>
<td>Out of frequency limit</td>
<td>Frequency limit ok</td>
</tr>
<tr>
<td>11</td>
<td>No operation</td>
<td>On operation</td>
</tr>
<tr>
<td>12</td>
<td>Drive ok</td>
<td>Stopped, auto start</td>
</tr>
<tr>
<td>13</td>
<td>Voltage ok</td>
<td>Voltage exceeded</td>
</tr>
<tr>
<td>14</td>
<td>Torque ok</td>
<td>Torque exceeded</td>
</tr>
<tr>
<td>15</td>
<td>Timer ok</td>
<td>Timer exceeded</td>
</tr>
</tbody>
</table>

Table 3. Status word bit positions

Other notes

• Set the speed, i.e. the main actual value, with register 2911.

• Read the configuration of par. 8-43.3 .. with register 2912.

• To configure a PCD to read a 32 bit parameter requires configuration of two consecutive PCDs to the same parameter. For example, the parameter 16-10 Power [kW] is a 32 bit integer, which may be configured in par. 8-43.2 and 8-43-3, or par. 8-43.4 and 8-43.5 and so on. The sizes of the different parameters are available in the programming guide.

• To address parameters directly use the register no. = parameter no. x 10. For example, the par. 16-90 is accessible via register no 16900.

• Some PLCs have 0 offsets, which means the value 1 must be subtracted from the register no. For example, reg. 2810 is 2809 etc.
7. Reference documentation

- Danfoss Operating guide
 VLT® HVAC basic drive FC 101
 Publication no. MG18AA02, 04/2018
- Danfoss Programming guide
 VLT® HVAC basic drive FC 101
 Publication no. MG18BS02, 04/2018
- Danfoss Design guide
 VLT® HVAC basic drive FC 101
 Publication no. MG18CS02, 04/2018
- Danfoss Operating guide
 VLT® HVAC drive FC 102
 Publication no. MG16O202, 04/2018
- Danfoss Programming guide
 VLT® HVAC drive FC 102
 Publication no. MG11CE02, 03/2015
- Danfoss Design guide
 VLT® HVAC drive FC 102
 Publication no. MG11BC02, 06/2014

8. Patents and trademarks

Novenco®, 诺文科, 诺万科 and 诺克 are registered trademarks of Novenco Marine & Offshore A/S.
ZerAx® is a registered trademark of Novenco Building & Industry A/S.
AirBox™ and NovAx™ are trademarks of Novenco Building & Industry A/S.

VLT® is a registered trademark of Danfoss A/S.

The ZerAx® processes of manufacture, technologies and designs are patented by Novenco A/S or Novenco Building & Industry A/S.

Granted patents include Brazil no. 2.777.140, 2.777.141, 2.777.144, 2.832.131 and 2.843.132; China no. ZL2010800458842, ZL2010800460965, ZL2010800462475 and ZL2012800387210; EU no. 2488759, 2488760, 2488761, 2739860 and 2739861; India no. 312464; South Korea no. 10-1907239, 10-1933724, 10-1980600 and 10-2011515; US no. 8.967.983, 9.200.641, 9.273.696 B2, 9.683.577 and 9.926.943 B2. Granted designs include Brazil no. BR-30-2012-003932-0; Canada no. 146333; China no. 1514732, 1517779, 1515003, 1555664 and 2312963; EU no. 001622945-0001 to 001622945-0009 and 001985391-0001; India no. 246293; South Korea no. 30-0735804; US no. D665895S, D683840S, D692195S, D704323S, D712023S, D743018S, D755363S, D756500S, D821560S and D824525S.

The NovAx Basic jet fans manufacturing processes, technologies and designs are patented by Novenco A/S or Novenco Building & Industry A/S.

The CGF jet fans designs are patented by Novenco A/S or Novenco Building & Industry A/S.

Granted designs include EU no. 001610643-0001 to 001610643-0005.

Copyright © 2016 - 2020, Novenco Building & Industry A/S. All rights are reserved.

9. Declaration of conformity

Refer to the declaration information in the documentation for the fans and frequency converters.
Pure competence in air.